If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2n^2-18n)/2n=0
Domain of the equation: 2n!=0We multiply all the terms by the denominator
n!=0/2
n!=0
n∈R
(2n^2-18n)=0
We get rid of parentheses
2n^2-18n=0
a = 2; b = -18; c = 0;
Δ = b2-4ac
Δ = -182-4·2·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-18}{2*2}=\frac{0}{4} =0 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+18}{2*2}=\frac{36}{4} =9 $
| 4^x+8=72 | | X2-8y=121.6 | | T2(5c+2)-2c=3(2c+3)+7 | | 8=n(n-4) | | 1/27x=9x | | x=30+0.03x | | x/(1000+x)=0.03 | | (x/1000+x)=0.03 | | 5x/2=75 | | 1/12b=-3.31 | | 500=x/6 | | A+(-2)=(a+4)-(a+2) | | 5x-24=46 | | 2x+14=62 | | (-n-2)-(2n+5)=0 | | 3(x+4)=7+(x-3) | | 3(x+4)=7+(x-2) | | 3(x+4)=7+(x-1) | | 3(x+4)=7+(x-4) | | 3(x+4)=7+(x+4) | | 3(x+4)=7-(x+5) | | 3(x+4)=7-(x+3) | | 3(x+4)=7-(x+2) | | 3(x+4)=7-(x+1) | | x-(2x/5)=150 | | 3(x+4)=7-(x+4) | | x-(2(x/5))=150 | | 3(x+4)=7-(x-4) | | (2.3)^x=3 | | x-(x/5)=150 | | X-4x=5x-3-x | | 5x-18-x+6=0 |